22 research outputs found

    Mechanical Design Optimization of a Piping Inspection Robot

    Get PDF
    International audienc

    Conception d'un robot bio-inspiré pour l'inspection de la canalisation

    Get PDF
    International audienc

    Numerical and Experimental Validation of the Prototype of A Bio-Inspired Piping Inspection Robot

    Get PDF
    Piping inspection robots are of greater importance for industries such as nuclear, chemical and sewage. Mechanisms having closed loop or tree-like structures can be employed in such pipelines owing to their adaptable structures. A bio-inspired caterpillar type piping inspection robot was developed at Laboratoire des Sciences du Num&eacute rique de Nantes (LS2N), France. Using DC motors and leg mechanisms, the robot accomplishes the locomotion of a caterpillar in six-steps. With the help of Coulomb&rsquo s law of dry friction, a static force model was written and the contact forces between legs of robot and pipeline walls were determined. The actuator forces of the DC motors were then estimated under static phases for horizontal and vertical orientations of the pipeline. Experiments were then conducted on the prototype where the peak results of static force analysis for a given pipe diameter were set as threshold limits to attain static phases inside a test pipeline. The real-time actuator forces were estimated in experiments for similar orientations of the pipeline of static force models and they were found to be higher when compared to the numerical model. Document type: Articl

    Conception d’un robot bio-inspiré pour l’inspection des canalisations

    No full text
    Piping inspection robots play an important role in industries such as nuclear, chemical and sewage. They can perform the assigned task with better accuracy and at the same time, they can operate within an irradiated or a polluted environment thereby reducing the risks for humans.This doctoral thesis focuses on the design of a bio-inspired robot for the inspection of pipelines. The thesis begins with the case study of a rigid bio-inspired piping inspection robot which was developed at LS2N, France for a project with AREVA. Static and dynamic force models are developed to understand the clamping forces and the torques on the actuators of the robot. Experimental validations are then done on the prototype to interpret the real-time actuator forces. In order to improve mobility, the robot architecture is made flexible by the addition of a tensegrity mechanism. Two types of tensegrity mechanisms are proposed and analyzed using algebraic methods to understand their tilt limits and to identify the influences on the design parameters. Experiments are performed on one of the prototypes of the tensegrity mechanism developed at LS2N for two types of trajectories in the vertical and horizontal orientations. An optimization approach is then being implemented to identify the sizes of motors that can permit the flexible piping inspection robot to overcome bends and junctions for a given range of pipeline diameters. A digital model of the flexible robot is then realized in CAD software.Les robots d’inspection de canalisations jouent un rôle important dans des industries telles que le nucléaire, la chimie et les eaux usées. Ils peuvent opérer avec précision dans un environnement irradié ou pollué, réduisant ainsi les risques pour les humains. Cette thèse porte sur la conception d’un robot bio-inspiré pour l’inspection des canalisations. La thèse commence par l’étude du cas d’un robot d’inspection bio-inspiré rigide qui a été développé au LS2N, France pour AREVA. Des modèles statiques et dynamiques sont développés pour comprendre les forces de serrage et les couples des actionneurs du robot. Des validations expérimentales sont également effectuées sur le prototype pour interpréter les forces d’actionnement en temps réel. Pour améliorer sa mobilité, l’architecture du robot est rendue flexible par l’ajout d’un mécanisme de tenségrité. Deux types de mécanismes de tenségrité sont proposés et analysés avec des méthodes algébriques pour comprendre leurs limites d’inclinaison et pour connaître l’influence des paramètres de conception. Des expériences sont réalisées sur l’un des prototypes des mécanismes de tenségrité développés au LS2N avec deux types de trajectoire en positions horizontale et verticale. Ensuite, une optimisation est réalisée pour identifier les moteurs qui peuvent permettre du robot d’inspection de canalisation flexible de passer les coudes et les jonctions pour une plage donnée de diamètres de tuyaux. Une maquette numérique du robot flexible est réalisée dans un logiciel de CAO

    Design of a bio-inspired robot for inspection of pipelines

    No full text
    Les robots d'inspection de canalisations jouent un rôle important dans des industries telles que le nucléaire, la chimie et les eaux usées. Ils peuvent opérer avec précision dans un environnement irradié ou pollué, réduisant ainsi les risques pour les humains. Cette thèse porte sur la conception d'un robot bio-inspiré pour l'inspection des canalisations. La thèse commence par l'étude du cas d'un robot d'inspection bio-inspiré rigide qui a été développé au LS2N, France pour AREVA. Des modèles statiques et dynamiques sont développés pour comprendre les forces de serrage et les couples des actionneurs du robot. Des validations expérimentales sont également effectuées sur le prototype pour interpréter les forces d’actionnement en temps réel. Pour améliorer sa mobilité, l'architecture du robot est rendue flexible par l'ajout d'un mécanisme de tenségrité. Deux types de mécanismes de tenségrité sont proposés et analysés avec des méthodes algébriques pour comprendre leurs limites d'inclinaison et pour connaître l’influence des paramètres de conception. Des expériences sont réalisées sur l'un des prototypes des mécanismes de tenségrité développés au LS2N avec deux types de trajectoire en positions horizontale et verticale. Ensuite, une optimisation est réalisée pour identifier les moteurs qui peuvent permettre du robot d'inspection de canalisation flexible de passer les coudes et les jonctions pour une plage donnée de diamètres de tuyaux. Une maquette numérique du robot flexible est réalisée dans un logiciel de CAO.Piping inspection robots play an important role in industries such as nuclear, chemical and sewage. They can perform the assigned task with better accuracy and at the same time, they can operate within an irradiated or a polluted environment thereby reducing the risks for humans. This doctoral thesis focuses on the design of a bio-inspired robot for the inspection of pipelines. The thesis begins with the case study of a rigid bio-inspired piping inspection robot which was developed at LS2N, France for a project with AREVA. Static and dynamic force models are developed to understand the clamping forces and the torques on the actuators of the robot. Experimental validations are then done on the prototype to interpret the real-time actuator forces. In order to improve mobility, the robot architecture is made flexible by the addition of a Tensegrity mechanism. Two types of Tensegrity mechanisms are proposed and analyzed using algebraic methods to understand their tilt limits and to identify the influences on the design parameters. Experiments are performed on one of the prototypes of the Tensegrity mechanism developed at LS2N for two types of trajectories in the vertical and horizontal orientations. An optimization approach is then being implemented to identify the sizes of motors that can permit the flexible piping inspection robot to overcome bends and junctions for a given range of pipeline diameters. A digital model of the flexible robot is then realized in CAD software

    Stability analysis of tensegrity mechanism coupled with a bio-inspired piping inspection robot

    Full text link
    Piping inspection robots play an essential role for industries as they can reduce human effort and pose a lesser risk to their lives. Generally, the locomotion techniques of these robots can be classified into mechanical and bioinspired. By using slot-follower leg mechanisms, DC-motors, and control units, a rigid caterpillar type inspection robot was designed and developed at LS2N, France . This rigid prototype helped in identifying the static forces required to accomplish good contact forces with the pipeline walls. In order to work inside curvatures, a tensegrity mechanism that uses three tension springs and a passive universal joint was introduced between each module of this robot. The optimal parameters of the robot assembly were identified by considering a preload of the cables, which ensured the stability of the entire robot. However, under static conditions, there exist some forces on the robot, especially on the tensegrity mechanism when one end of the leg mechanism is clamped with the pipeline walls. These forces are dominant when the orientation of the pipeline is horizontal. The objective of this article is to understand the effect of the stiffness of the spring on the static stability of the tensegrity mechanism under the self-weight of the robot assembly

    Conception d'un robot bio-inspiré pour l'inspection de la canalisation

    No full text
    International audienc

    Trajectory Planning for a 3-SPS-U Tensegrity Mechanism

    No full text
    International audienceThis article presents the actuation strategy of a 2-DOF tensegrity type mechanism that employs three tension springs and a passive universal joint. This mechanism is proposed to be incorporated as an articulation unit for a piping inspection robot in order to overcome pipe bends and junctions. In the event of a junction, external actuations are required to allow the mechanism as well as the robot to follow a certain direction. Using DC-motors coupled with encoders, experiments are carried out on a test bench of the tensegrity mechanism. The actuation of the mobile platform is performed using cables that pass through each spring. By correlating the architecture to a 3-SPS-U parallel mechanism, the singularity-free workspace of the mechanism is analyzed to identify the tilt limits. A closed-loop PID controller is implemented using a microcomputer to perform a linear trajectory within the singularity-free workspace. The Inverse Kinematic Problem (IKP) is solved by passing input tilt angles to the controller. With the help of a force control algorithm, the experiments are carried out under no-load conditions for vertical and horizontal orientations of the mechanism. The error data of the joint positions and the motor torques are then interpreted for both orientations of the mechanism
    corecore